Section outline
-
1. Antonín V, Stewart JE, Medel Ortiz R, Kim M-S, Bonello P, Tomšovský M, Klopfenstein NB. 2021. Desarmillaria caespitosa, a North American vicariant of D. tabescens. Mycologia 113, 776–790. https://doi.org/10.1080/00275514.2021.1890969.
2. Baumgartner K. 2004. Root collar excavation for postinfection control of Armillaria root disease of grapevine. Plant Dis, 88, 1235–1240. https://doi.org/10.1094/PDIS.2004.88.11.1235.
3. Baumgartner K, Coetzee MPA, Hoffmeister D. 2011. Secrets of the subterranean pathosystem of Armillaria. Mol. Plant Pathol. 12, 515–534. https:// doi.org/10.1111/j.1364-3703.2010.00693.x.
4. Blodgett JT, Worrall JJ. 1992. Distributions and hosts of Armillaria species in New York. Plant Disease 76(2):166–169.
5. Burrill EA, Worrall JJ, Wargo PM, Stehman SV. 1999. Effects of defoliation and cutting in eastern oak forests on Armillaria spp. and a competitor, Megacollybia platyphylla. Canadian Journal of Forest Research 29(3):347–355 https://forestpathology.org/pdfs/burrill1999megacollybia.pdf.
6. Elías-Román RD, Calderón-Zavala G, Guzmán-Mendoza R, Vallejo-Pérez MR, Klopfenstein NB, Mora Aguilera JA. 2019. ‘Mondragon’: a clonal plum rootstock to enhance management of Armillaria root disease in peach orchards of Mexico. Crop Prot. 121, 89–95. https://doi.org/10.1016/j.cropro.2019.03.011.
7. Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL. 2003. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can. J. For. Res. 33, 612–623. https://doi.org/10.1139/X03-065.
8. Gregory SC, Rishbeth J, Shaw III CG. 1991. Pathogenicity and virulence. In: Armillaria Root Disease: Agricultural Handbook vol. 691, eds Shaw III CG, Kile GA, pp. 76–87. Washington, DC: USDA Forest Service.
9. Guo T, Wang HC, Xue WQ, Zhao J, Yang ZL. 2016. Phylogenetic analyses of Armillaria reveal at least 15 phylogenetic lineages in China, seven of which are associated with cultivated Gastrodia elata. PLoS One 11 (5). https://doi.org/10.1371/journal.pone.0154794, e0154794.
10. Heinzelmann R, Dutech C, Tsykun,T, Labbé F, Soularue J-P, Prospero S. 2019. Latest advances and future perspectives in Armillaria research. Can. J. Plant Pathol. 41, 1–23. https://doi.org/10.1080/07060661.2018.1558284.
11. Ibarra Caballero JR, Lalande BM, Hanna JW, Klopfenstein NB, Kim M-S, Stewart JE. 2022. Genomic comparisons of two Armillaria species with different ecological behaviors and their associated soil microbial communities. Microb. Ecol. https://doi.org/10.1007/s00248-022-01989-8.
12. Kedves O, Shahab D, Champramary S, Chen L, Indic B, Bóka B, Nagy VD, Vágvölgyi C, Kredics L, Sipos G. 2021. Epidemiology, biotic interactions, and biological control of Armillarioids in the Northern Hemisphere. Pathogens 10, 76. https://doi.org/10.3390/pathogens10010076.
13. Kim M-S, Heinzelmann R, Labbé F, Ota Y, Elías-Román RD, Pildain MB, Stewart JE, Woodward, S, Klopfenstein NB. 2022. Chapter 20 - Armillaria root diseases of diverse trees in wide-spread global regions. Forest Microbiology, Volume 2: Forest Tree Health, Volume 2: in Forest Microbiology, 361-378. https://doi.org/10.1016/B978-0-323-85042-1.00004-5
14. Klopfenstein NB, Stewart JE, Ota Y, Hanna JW, Richardson BA, Ross-Davis AL, Elías-Román RD, Korhonen K, Keča N, Iturritxa E, Alvarado-Rosales D, Solheim H, Brazee NJ, Łakomy P, Cleary MR, Hasegawa E, Kikuchi T, Garza-Ocañas F, Tsopelas P, Rigling D, Prospero S, Tsykun T, Bérubé JA, Stefani FOP, Jafarpour S, Antonín V, Tomšovský M, McDonald GI, Woodward S, Kim M-S. 2017. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences. Mycologia 109, 75–91. https://doi.org/10.1080/00275514.2017.1286572.
15. Koch RA, Herr JR. 2021. Global distribution and richness of Armillaria species inferred from public databases and amplicon sequencing datasets. Front. Microbiol. 12. https://doi.org/10.3389/fmicb.2021.733159, 733159.
16. Koch RA, Wilson AW, Séné O, Henkel TW, Aime MC. 2017. Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster. BMC Evol. Biol. 17, 33. https://doi.org/10.1186/s12862-017-0877-3.
17. Korhonen K. 1978. Interfertility and clonal size in the Armillariella mellea complex. Karstenia 18, 31–42. https://doi.org/10.29203/ka.1978.135.
18. Kubiak K, Z˙ ółciak A, Damszel M, Lech P, Sierota Z. 2017. Armillaria Pathogenesis under Climate. Forests, 8(4), 100; https://doi.org/10.3390/f8040100
19. Labbé F, Lung-Escarmant B, Fievet V, Soularue J-P, Laurent C, Robin C, Dutech C. 2017. Variation in traits associated with parasitism and saprotrophism in a fungal root-rot pathogen invading intensive pine plantations. Fungal Ecol. 26, 99–108. https://doi.org/10.1016/j.funeco.2017.01.001.
20. McDonald GI. 2012. Is stumping a wise solution for the long-term: the problem of phenotype-environment mismatchin. In: Zeglen, S., Palacios, P. (Compilers), Proceedings of the 59th annual Western International Forest Disease Work Conference. 10–14 October 2011, Leavenworth, WA, USA. U.S. Department of Agriculture, Forest Service, Forest Health Protection, pp. 53–64.
21. Mihail JD. 2015. Bioluminescence patterns among North American Armillaria species. Fungal Biol. 119, 528–537. https://doi.org/10.1016/j. funbio.2015.02.004
22. Redfern DB, Filip GM. 1991. Inoculum and infection. In: Armillaria Root Disease: Agricultural Handbook vol. 691, eds Shaw III CG, Kile GA, pp. 48–61. Washington, D.C.: USDA Forest Service.
23. Rishbeth J. 1968. The growth rate of Armillaria mellea. Trans. Br. Mycol. Soc. 51, 575–586. https://doi.org/10.1016/S0007-1536(68)80027-0.
24. Schnabel G, Agudelo P, Henderson GW, Rollins P.A. 2012. Aboveground root collar excavation of peach trees for Armillaria root rot management. Plant Dis. 96, 681–686. https://doi.org/10.1094/PDIS-06-11-0493.
25. Sierota Z, Grodzki W. 2020. Picea abies–Armillaria–Ips: a strategy or coincidence? Forests 11, 1023. https://doi.org/10.3390/f11091023.
26. Smith ML, Bruhn JN, Anderson JB. 1992. The fungus Armillaria bulbosa is among the largest and oldest organisms. Nature 356, 428–431. https:// doi.org/10.1038/356428a0.
27. Stewart JE, Kim M-S, Lalande B, Klopfenstein NB. 2021. Pathobiome and microbial communities associated with forest tree root diseases. In: Asiegbu, F.O., Kovalchuk, A. (Eds.), Forest Microbiology -Tree Microbiome: Phyllosphere, Endosphere, and Rhizosphere. Vol. 1. Academic Press, Elsevier, Inc, London, UK, pp. 277–292, https://doi.org/10.1016/B978-0-12-822542-4.00004-8. Chapter 15.
28. Suetsugu K, Matsubayashi J, Tayasu I. 2020. Some mycoheterotrophic orchids depend on carbon from dead wood: novel evidence from a radiocarbon approach. New Phytol. 227, 1519–1529. https://doi.org/10.1111/nph.16409.
29. Wargo PM, Houston DR. 1974. Infection of defoliated sugar maple trees by Armillaria mellea. Phytopathology 64, 817–822. https://doi.org/10.1094/ PHYTO-64-817.
30. Warren GL, Singh P. 1970. Hylobius Weevils and Armillaria Root Rot in A Coniferous Plantation in Newfoundland, Nfld. Bi-Monthly Research Notes. 26 Canada Fisheries and Forestry, Canadian Forestry Service, St. John, NL, Canada, p. 55.
31. van der Kamp BJ. 1993. Rate of spread of Armillaria ostoyae in the central interior of British Columbia. Can. J. For. Res. 23, 1239–1241. https://doi. org/10.1139/x93-156.