Section outline
-
1. Anderbrant, O., Schlyter, F. 1987b. Ecology of the Dutch Elm Disease Vectors Scolytus laevis and S. scolytus (Coleoptera: Scolytidae) in Southern Sweden. J. Appl. Ecol. 24, 539. https://doi.org/10.2307/2403891
2. Bentz, B.J., Jönsson, A.M. 2015. Modeling Bark Beetle Responses to Climate Change, in: Bark Beetles. Academic Press, pp. 533–553. https://doi.org/10.1016/B978-0-12-417156-5.00013-7
3. Brasier, C.M. 1990. China and the origins of Dutch elm disease: an appraisal. Plant Pathol. 39, 5–16. https://doi.org/10.1111/j.1365-3059.1990.tb02470.x
4. Brasier, C. M. (1991). Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics." Mycopathologia 115(3): 151-161.
5. Brasier, C. M. (1996). New horizons in Dutch elm disease control. Report on Forest Research 1996, HMSO: 20-28.
6. Brasier, C.M. 1996b. Low genetic diversity of the Ophiostoma novo-ulmi population in North America. Mycologia 88, 951–964. https://doi.org/10.1080/00275514.1996.12026736
7. Brasier, C. M. (2000). Intercontinental Spread and Continuing Evolution of the Dutch Elm Disease Pathogens. The Elms: Breeding, Conservation, and Disease Management. C. P. Dunn, Springer US: 61-72.
8. Brasier, C. M. (2001). "Rapid Evolution of Introduced Plant Pathogens via Interspecific Hybridization is leading to rapid evolution of Dutch elm disease and other fungal plant pathogens." BioScience 51(2): 123-133.
9. Brasier, C.M. 2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57, 792–808. https://doi.org/10.1111/j.1365-3059.2008.01886.x
10. Brasier, C. M., et al. (2004). "Molecular analysis of evolutionary changes in populations of Ophiostma novo-ulmi." Invest Agrar: Sist Recur For 13(1): 93-103.
11. Brasier, C. M. and K. W. Buck (2001). "Rapid Evolutionary Changes in a Globally Invading Fungal Pathogen (Dutch Elm Disease)." Biological Invasions 3: 223-233.
12. Brasier, C. M. and S. A. Kirk (2001). "Designation of the EAN and NAN races of Ophiostoma novo-ulmi as subspecies." Mycological Research 105(5): 547-554.
13. Brasier, C. M. and S. A. Kirk (2010). "Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness." Plant Pathology 59(1): 186-199.
14. Brasier, C. M. and J. F. Webber (2019). "Is there evidence for post-epidemic attenuation in the Dutch elm disease pathogen Ophiostoma novo-ulmi?" Plant Pathology 68(5): 921-929.
15. Buiteveld, J., Van Der Werf, B., Hiemstra, J.A. 2015. Comparison of commercial elm cultivars and promising unreleased Dutch clones for resistance to Ophiostoma novo-ulmi. iForest - Biogeosciences For. 8, 158–164. https://doi.org/10.3832/ifor1209-008
16. Campbell, F. T. and S. E. Schlarbaum (1994). Fading forests North American trees and the threat of exotic pests. New York, Natural Resources Defense Council.
17. Caudullo, G., De Rigo, D. 2016. Ulmus - elms in Europe: distribution, habitat, usage and threats, in: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, H.T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Luxembourg.
18. Caulton, E., Aitken, W., Rashid, N. 1998. Aerobiological aspects of elm (Ulmus spp) in South-East Scotland in relation to elm decline from Dutch elm disease (1976–1996). Aerobiologia (Bologna). 14, 147–153. https://doi.org/10.1007/BF02694199
19. Clinton, G.P., McCormick, F.A. 1936. Dutch elm disease. Graphium ulmi. New Haven.
20. Clouston, B., Stansfield, K., eds., After the Elm (London, 1979)
21. Corfixen, P., Parmasto, E. 2005. Hymenochaete ulmicola sp. nov. (Hymenochaetales). Mycotaxon 91, 465–469.
22. Dvořák, M., Tomšovský, M., Jankovský, L., Novotný, D. 2007. Contribution to identify the causal agents of Dutch elm disease in the Czech Republic. Plant Prot. Sci. 43, 142–145.
23. Eisele [WWW Document]. 2018. Elms - lungs of the city. http://resista-ulmen.com/wp-content/uploads/E_Resista_Image_Brochure_Web.pdf
24. EPPO Global Database [WWW Document] 2019. EPPO. URL https://gd.eppo.int/ (accessed 6.7.19).
25. Flower, C. E., et al. (2017). Canopy Decline Assessments in American Elm After Inoculation With Different Doses of Ophiostoma ulmi and O. novo-ulmi. Proceedings of the American Elm Restoration Workshop 2016.
26. Ganley, R. J. and L. S. Bulman (2016). "Dutch elm disease in New Zealand: impacts from eradication and management programmes." Plant Pathology 65(7): 1-9.
27. Ghelardini, L. (2007) Bud Burst Phenology, Dormancy Release & Susceptibility to Dutch Elm Disease in Elms (Ulmus spp.). Doctoral Thesis No. 2007:134. Faculty of natural Resources and Agricultural Services, Swedish University of Agricultural Sciences, Uppsala, Sweden
28. Gibbs, J. N. (1978). "Intercontinental Epidemiology of Dutch Elm Disease." Annual Review of Phytopathology 16(1): 287-307
29. Griffin, Jason J.; Jacobi, E., William R.; McPherson, Gregory; Sadof, Clifford S.; et al. (2017). Ten-Year Performance of the United States National Elm Trial (PDF). Arboriculture & Urban Forestry. 43 (3). International Society of Arboriculture: 107– 120. doi:10.17660/ActaHortic.2018.1191.5. ISSN 0567-7572. OCLC 7347020445.
30. Hanso, M., Drenkhan, R. 2013. Simple visualization of climate change for improving the public perception in forest pathology. For. Stud. 58, 37–45. https://doi.org/10.2478/fsmu-2013-0004
31. Hantula, J. 2021. The story of Dutch elm disease (Hollaninjalavataudi tarina) [In Finnish]. Sorbifolia 52, 31–35.
32. Heliövaara, K., Peltonen, M. 1999. Bark Beetles in a Changing Environment. Ecol. Bull. https://doi.org/10.2307/20113226
33. Hemery, G.E., Clark, J.R., Aldinger, E., Claessens, H., Malvolti, M.E., O’Connor, E., Raftoyannis, Y., Savill, P.S., Brus, R. 2010. Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 1, 65–81. https://doi.org/10.1093/forestry/cpp034
34. Herald (2019). Hundreds of Dutch elm disease trees to be felled. Herald Scotland Online.
35. Heybroek, H. 2015. The elm, tree of milk and wine. iForest - Biogeosciences For. 8, 181–186. https://doi.org/10.3832/ifor1244-007
36. Heybroek, H. M. 1993. The Dutch Elm Breeding Program. Pages 16-25 in: Dutch Elm Disease Research: Cellular and Molecular Approaches. M. B. Sticklen and J. L. Sherald, eds. Springer-Verlag, New York.
37. Heybroek, H. 2000. Notes on elm breeding and genetics. Pages 249-258 in: The Elms, Breeding, Conservation, and Disease Management. C. P. Dunn, ed. Kluwer Academic Publishers, Norwell, MA.
38. Heybroek, H. M. and Nijboer, R. (2013). Christine Johanna Buisman in Italy. p. 4–6. Private publication, Netherlands.
39. Hintikka, V. 1974. Ceratocystis ulmi in Finland. Karstenia 14, 32–32. https://doi.org/10.29203/ka.1974.87
40. Holmes, Francis W.; Heybroek, H.M. (1990). Dutch elm disease: the early papers: selected works of seven Dutch women phytopathologists. APS Press. ISBN 978-0-89054-110-4
41. Ignatieva, M., Konechnaya, G., Stewart, G. 2011. St. Petersburg, in: Plants and Habitats of European Cities. Springer New York, New York, NY, pp. 407–452. https://doi.org/10.1007/978-0-387-89684-7_12
42. Jacobi et al. (2013). Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi. Forest Pathology 43(3): 232-237.
43. Jüriado, I., et al. (2009). "Diversity of epiphytic lichens in boreo-nemoral forests on the North-Estonian limestone escarpment: The effect of tree level factors and local environmental conditions." Lichenologist 41(1): 81-96.
44. Jürisoo, L., Padari, A., Drenkhan, R. 2021a. Spread and riskiness of Dutch elm disease in Estonia (Jalakasurma levikust ja ohtlikkusest Eestis) [In Estonian]. For. Stud. | Metsanduslikud Uurim.
45. Jürisoo, L., Selikhovkin, A. V., Padari, A., Shevchenko, S. V., Shcherbakova, L.N., Popovichev, B.G., Drenkhan, R. 2021b. The extensive damages of elms by Dutch elm disease agents and their hybrids in north-western Russia. submitted.
46. Jürisoo, L., Süda, I., Agan, A., Drenkhan, R. 2021c. Vectors of Dutch Elm Disease in Northern Europe. Insects 12, 393. https://doi.org/10.3390/insects12050393
47. Kalamees, K. 2011. Roosa võrkheinik: seenharuldus jalakal (Wrinkled Peach: rare fungus on elms) [In Estonian]. Eesti Lood. (Estonian Nature) 62, 41–41.
48. Kirisits, T. 2007. Fungal Associates of European Bark Beetles With Special Emphasis on the Ophiostomatoid Fungi, in: Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Springer Netherlands, pp. 181–236. https://doi.org/10.1007/978-1-4020-2241-8_10
49. Kirisits, T. (2013). Dutch elm disease and other ophiostoma diseases. Infectious Forest Diseases. P. Gonthier and G. Nicolotti, CABI Publishing: 256-282.
50. Konrad, H., et al. (2002). "Genetic evidence for natural hybridization between the Dutch elm disease pathogens Ophiostoma novo-ulmi ssp. novo-ulmi and O. novo-ulmi ssp. americana." Plant Pathology 51: 78-84
51. Laasimer, L. (1965). Eesti NSV taimkate (Vegetation of Estonian SSR) [In Estonian]. Valgus, Tallinn (p. 421).
52. La Porta, N., Capretti, P., Thomsen, I.M., Kasanen, R., Hietala, A.M., Von Weissenberg, K. 2008. Forest pathogens with higher damage potential due to climate change in Europe. Can. J. Plant Pathol. 30, 177–195. https://doi.org/10.1080/07060661.2008.10540534
53. Lepik, E. 1940a. Estonia. The Elm disease in the country. Int. Bull. Plant Prot. 14, 2.
54. Liebhold, A.M., Brockerhoff, E.G., Kalisz, S., Nuñez, M.A., Wardle, D.A., Wingfield, M.J. 2017. Biological invasions in forest ecosystems. Biol. Invasions 19, 3437–3458. https://doi.org/10.1007/s10530-017-1458-5
55. Luchi, N., Ioos, R., Santini, A. 2020. Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-020-10395-4
56. Martín, J. A., et al. (2010). "Ecological factors in Dutch elm disease complex in Europe - a review." Ecological Bulletins 53: 209-224.
57. Martín, J. A., et al. (2014). "Seven ulmus minor clones tolerant to Ophiostoma novo-ulmi registered as forest reproductive material in Spain." IForest 8: 172-180.
58. Martín, J. A., et al. (2019). Breeding and scientific advances in the fight against Dutch elm disease: Will they allow the use of elms in forest restoration? New Forests 50(2): 183-215.
59. Matisone, I., Kenigsvalde, K., Zaļuma, A., Burņeviča, N., Šņepste, I., Matisons, R., Gaitnieks, T. 2020. First report on the Dutch elm disease pathogen Ophiostoma novo-ulmi from Latvia. For. Pathol. e12601. https://doi.org/10.1111/efp.12601
60. Mehrotra, M.D. (1995). Ophiostoma himal-ulmi sp. nov., a new species of Dutch elm disease fungus endemic to the Himalayas. Mycological Research. 99 (2): 205–215. doi:10.1016/S0953-7562(09)80887-3. ISSN 0953-7562
61. Menkis, A., Östbrant, I.L., Davydenko, K., Bakys, R., Balalaikins, M., Vasaitis, R. 2016a. Scolytus multistriatus associated with Dutch elm disease on the island of Gotland: phenology and communities of vectored fungi. Mycol. Prog. 15, 1–8. https://doi.org/10.1007/s11557-016-1199-3
62. Menkis, A., Östbrant, I.L., Wågström, K., Vasaitis, R. 2016b. Dutch elm disease on the island of Gotland: monitoring disease vector and combat measures. Scand. J. For. Res. 31, 237–241. https://doi.org/10.1080/02827581.2015.1076888
63. Mitchell, A.G., Brasier, C.M. 1994. Contrasting structure of European and North American populations of Ophiostoma ulmi. Mycol. Res. 98, 576–582. https://doi.org/10.1016/S0953-7562(09)80482-6
64. Motiejūnaitė, J., Kutorga, E., Kasparavičius, J., Lygis, V., Norkutė, G. 2016. New records from Lithuania of fungi alien to Europe. Mycotaxon 131, 49–60. https://doi.org/10.5248/131.49
65. Müller, M.M., Hamberg, L., Hantula, J. 2016. The susceptibility of European tree species to invasive Asian pathogens: a literature based analysis. Biol. Invasions 18, 2841–2851. https://doi.org/10.1007/s10530-016-1174-6
66. National Elm Trial. Bioagricultural Sciences & Pest Management. Fort Collins, Colorado: Colorado State University College of Agricultural Sciences: Department of Agricultural Biology. 2018. Archived from the original on 30 March 2018. Retrieved 23 September 2021.
67. Newhouse, AE; Schrodt, F; Liang, H; Maynard, CA; Powell, WA (2007). "Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization". Plant Cell Rep. 26 (7): 977–987. doi:10.1007/s00299-007-0313-z. PMID 17310333. S2CID 21780088.
68. Nikulina, T., Mandelshtam, M., Petrov, A., Nazarenko, V., Yunakov, N. 2015. A survey of the weevils of Ukraine. Bark and ambrosia beetles (Coleoptera: Curculionidae: Platypodinae and Scolytinae). Zootaxa 3912, 1–61. https://doi.org/10.11646/zootaxa.3912.1.1
69. Peacock, J. W. 1981. Citywide mass trapping of Scolytus multistriatus with multilure. Pages 406-426 in: Proc. Dutch Elm Dis. Sympos. Workshop, 1981. E. S. Kondo, Y. Hiratsuka, and W. B. G. Denyer, eds. Manitoba Department of Natural Resources, Winnipeg.
70. Peace, T. R. (1960). "The status and development of Elm Disease in Britain." Forestry Commission Bulletin 33: 44-44.
71. Phillips, D. H. and D. A. Burdekin (1992). Diseases of Forest and Ornamental Trees. London, Palgrave Macmillan UK.
72. Pimentel, D., Zuniga, R., Morrison, D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002
73. Ramsfield, T.D., Bentz, B.J., Faccoli, M., Jactel, H., Brockerhoff, E.G. 2016. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry 89, 245–252. https://doi.org/10.1093/forestry/cpw018
74. Richens, R.H. 1983. Elm. Cambridge University Press (CUP), Cambridge.
75. Roloff, A., Korn, S., Gillner, S. 2009. The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban For. Urban Green. 8, 295–308. https://doi.org/10.1016/J.UFUG.2009.08.002
76. Rytkönen, A., Lilja, A., Petäistö, R.L., Hantula, J. 2008. Irrigation water and Phytophthora cactorum in a forest nursery. Scand. J. For. Res. 23, 404–411. https://doi.org/10.1080/02827580802419034
77. Rytkönen, A., Lilja, A., Drenkhan, R., Gaitnieks, T., Hantula, J. 2011. First record of Chalara fraxinea in Finland and genetic variation among isolates sampled from Åland, mainland Finland, Estonia and Latvia. For. Pathol. 41, 169–174. https://doi.org/10.1111/j.1439-0329.2010.00647.x
78. Santini, A., Fagnani, A., Ferrini, F., Ghelardini, L., Mittempergher, L. 2005. Variation among Italian and French elm clones in their response to Ophiostoma novo-ulmi inoculation. For. Pathol. 35, 183–193. https://doi.org/10.1111/j.1439-0329.2005.00401.x
79. Santini, A. and M. Faccoli (2013). "Dutch elm disease and elm bark beetles: a century of association." http://iforest.sisef.org/ 8(2): 126-126.
80. Santini, A., Fagnani, A., Ferrini, F., Mittempergher, L., Brunetti, M., Crivellaro, A., and Macchioni, N. 2003. Elm breeding for DED resistance, the Italian clones and their wood properties. Pages 179-184 in: New Approaches to Elm Conservation. L. Gil, A. Solla, and G. Ouellette, eds. Instituto Nacional de Investigatión y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain.
81. Scheffer, R.J., Voeten, J.G.W.F., Guries, R.P. 2008. Biological Control of Dutch Elm Disease. Plant Dis. 92, 192–200. https://doi.org/10.1094/PDIS-92-2-0192
82. Schmidt, O. (2006). Wood and Tree Fungi. Biology, Damage, Protection and Use. Berlin, Heidelberg, Springer-Verlag.
83. Selikhovkin, A. V., Drenkhan, R., Mandelshtam, M.Y., Musolin, D.L. 2020. Invasions of insect pests and fungal pathogens of woody plants into the northwestern part of European Russia [In Russian]. Vestn. Saint Petersbg. Univ. Earth Sci. 65, 263–283. https://doi.org/10.21638/spbu07.2020.203
84. Sherif, S., Jones, A.M.P., Shukla, M.R., Saxena, P.K. 2014. Establishment of invasive and non-invasive reporter systems to investigate American elm -Ophiostoma novo-ulmi interactions. Fungal Genet. Biol. 71, 32–41. https://doi.org/10.1016/j.fgb.2014.08.005
85. Smalley, E. B., and Guries, R. P. 1993. Breeding elms for resistance to Dutch elm disease. Annu. Rev. Phytopathol. 31:325-352.
86. Smith, S. M. and J. Hulcr (2015). <i>Scolytus</i> and other Economically Important Bark and Ambrosia Beetles. Bark Beetles Biology and Ecology of Native and Invasive Species. F. E. Vega and R. W. Hofstetter, Academic Press: 495-531.
87. Solheim, H., Eriksen, R., Hietala, A.M. 2011. Dutch elm disease has currently a low incidence on wych elm in Norway. For. Pathol. 41, 182–188. https://doi.org/10.1111/j.1439-0329.2010.00650.x
88. Solla, A., Menéndez, Y., Burón, M., Iglesias, S., and Gil, L. 2000. Spanish program for the conservation and breeding of elms against DED. Pages 295-304 in: The Elms, Breeding, Conservation, and Disease Management. C. P. Dunn, ed. Kluwer Academic Publishers, Norwell, MA.
89. Spierenburg, Barendina (1921). "Een onbekende ziekte in de iepen (An unknown disease in elms)". European Journal of Plant Pathology. 27 (5).
90. Stenlid, J., Oliva, J., Boberg, J.B., Hopkins, A.J.M. 2011. Emerging Diseases in European Forest Ecosystems and Responses in Society. Forests 2, 486–504. https://doi.org/10.3390/f2020486
91. Stennes, M. A. (2000). Dutch Elm Disease Chemotherapy with Arbotect 20-S® and Alamo®. The Elms. C. P. Dunn. Boston, MA, Springer: 173-188.
92. Stipes, R.J., Campana, R.J. 1981. Compendium of elm diseases, American P. ed, Compendium of elm diseases. American Phytopathological Society., St. Paul, Minnesota.
93. Sturrock, R.N. 2012. Climate change and forest diseases. For. Syst. 21, 329–336. https://doi.org/10.1111/j.1365-3059.2010.02406.x
94. Thor, G., Johansson, P., Jönsson, M.T. 2010. Lichen diversity and red-listed lichen species relationships with tree species and diameter in wooded meadows. Biodivers. Conserv. 19, 2307–2328. https://doi.org/10.1007/s10531-010-9843-8
95. Townsend, A. M. 2000. USDA Genetic Research on Elms. Pages 271-278 in: The Elms, Breeding, Conservation, and Disease Management. C. P. Dunn, ed. Kluwer Academic Publishers, Norwell, MA.
96. Townsend, A.M., Douglass, L.W. 2004. Evalutation of elm clones for tolerance to Dutch elm disease. J. Arboric. 30, 179–184.
97. Tziros, G. T., et al. (2017). "Current status of the Dutch elm disease pathogen populations affecting Ulmus minor in Greece." Forest Pathology 47(2): e12323-e12323.
98. Venturas, M., et al. (2013). "Hydraulic properties of European elms: Xylem safety-efficiency tradeoff and species distribution in the Iberian Peninsula." Trees - Structure and Function 27(6): 1691-1701.
99. Waller, M. 2013. Drought, disease, defoliation and death: forest pathogens as agents of past vegetation change. J. Quat. Sci. 28, 336–342. https://doi.org/10.1002/jqs.2631
100. Webber, J.F. 1990. Relative effectiveness of Scolytus scolytus, S. multistriatus and S. kirschi as vectors of Dutch elm disease. For. Pathol. 20, 184–192. https://doi.org/10.1111/j.1439-0329.1990.tb01129.x
101. Webber, J. F. (2000). Insect Vector Behavior and the Evolution of Dutch Elm Disease. The Elms. Boston, MA, Springer US: 47-60.
102. Webber, J.F. 2004. Experimental studies on factors influencing the transmission of Dutch elm disease. Invest Agrar Sist Recur 13, 197–205.
103. Webber, J.F., Brasier, C.M. 1984. The transmission of Dutch elm disease: a study of the process involved., in: Invertebrate-Microbial Interactions. Cambridge University Press, pp. 271–306.
104. Whiteley, R. 2004. Quantitative and molecular genetic variation in Ulmus laevis Pall. Swedish University of Agricultural Sciences.
105. Wingfield, M.J., Garnas, J.R., Hajek, A., Hurley, B.P., de Beer, Z.W., Taerum, S.J. 2016. Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol. Invasions 18, 1045–1056. https://doi.org/10.1007/s10530-016-1084-7
106. Zalapa, J.E., Brunet, J., Guries, R.P. 2008. Genetic diversity and relationships among Dutch elm disease tolerant Ulmus pumila L. accessions from China. Genome 51, 492–500. https://doi.org/10.1139/G08-034
107. Ижевский, С.С.; Никитский, Н.Б.; Волков, О.Г.; Долгин, М.М (2005). Иллюстрированный справочник. жуков-ксилофагов – вредителей леса и лесоматериалов Российской Федерации (PDF). Тула: Российская Академия Наук, Уральское отделение, Коми научный центр, Институт биологии. (Izhevsky, SS; et al. (2005). "An illustrated guide to the xylophagous beetles injuring forests and timber in the Russian Federation". Russian Academy of Sciences, Ural Branch, Komi Science Center, Institute of Biology. Tula). p. 165.