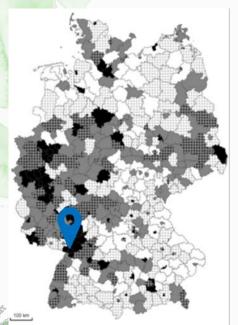
How to reduce trade-offs between supporting and regulating ecosystem services from urban and peri-urban forests?

Somidh Saha somidh.saha@kit.edu www.somidh.com



Urban and Peri-Urban Forests (UPFs) UPFs of Singapore (graphic source: New York Times)

Karlsruhe and global change

Climate

change

vulnerabil

Karlsruhe is vulnerable to the double trouble of climate change impacts and urbanization (DWD 2016, Rannow et al. 2010, Siedentop and Fina 2010)

The number of hot days (>25°C)

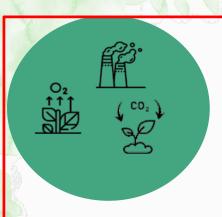
by 2040s! (Government of Baden-

Württemberg, Stuttgart)

was 50 in 2010s – will increase to 70

5 challenges of Karlsruhe's urban and peri-urban forests

- 1. Crown damage and die-back of trees inside built-up areas of the cities
- 2. Crown damage and die-back of trees in peri-urban forest stands
- 3. Densification: the decline of above and below-ground spaces for the trees
- 4. Biodiversity loss
- 5. Challenges in tree care and management due to lack of financial resources and human resources



Some ecosystem services and trade-offs

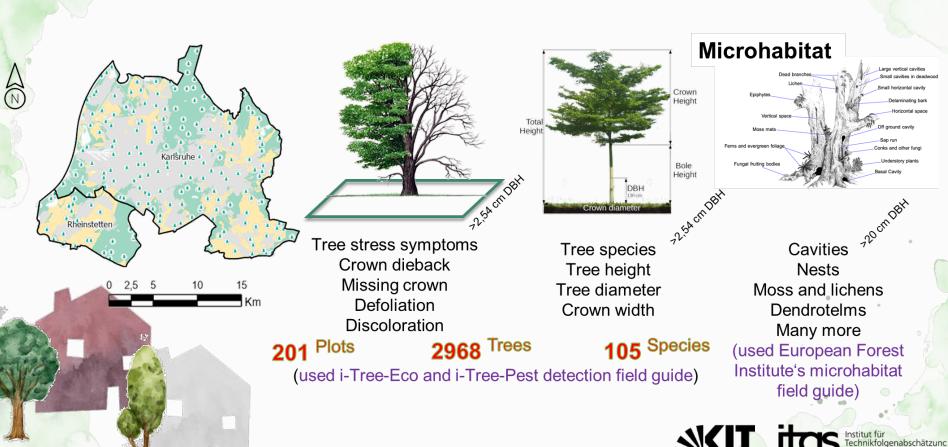
Ecosystem services

- Heat mitigation
- CO2sequestration
 - und -Speicherung•
- Pollution removal
- Air quality improvement
- Erosion control

Supporting

- Flora and fauna diversityHabitat diversity
 - Genetics and trait

Provisioning


- Timber
- Biomass
- Fruits
- NTFPs

Cultural

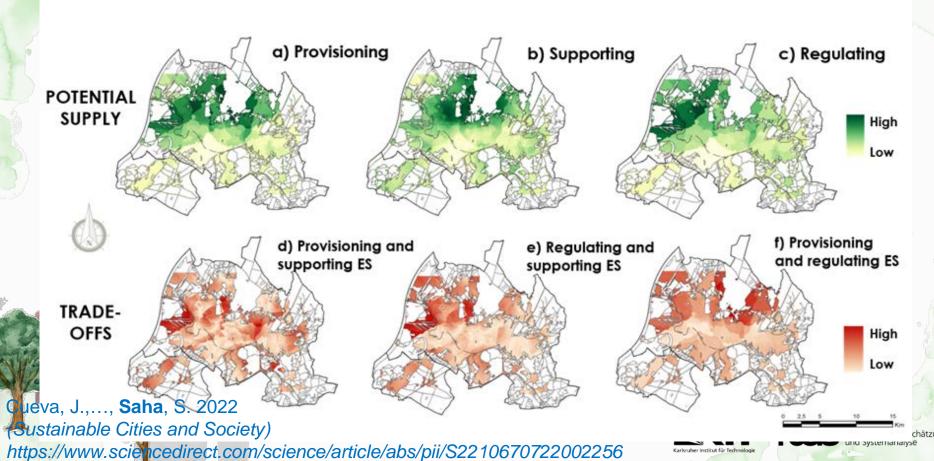
- Aesthetic values
- Social cohesion
- Sports
- Mental health

UPFs inventory in Karlsruhe and Rheinstetten

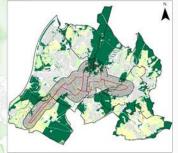
Ecosystem services assessed from 2968 trees (201 plots) Type of Ecosystem Name of ecosytem Measurement Standard error of Standard error

Cueva, J.,..., **Saha**, S. 2022 (Sustainable Cities and Society)

https://www.sciencedirect.com/science/article/abs/pii/S22106

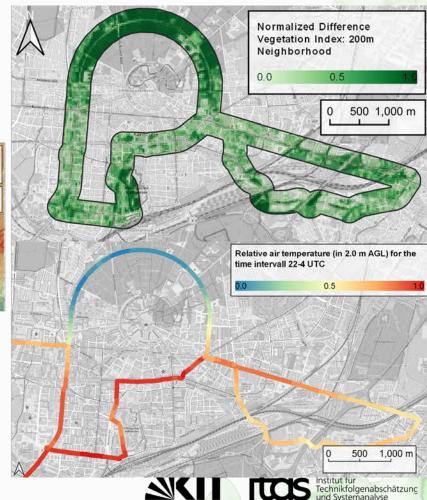

70722	00225	5		
	Color of	FA.		
	LANE DE			
			3	
ALL SE				

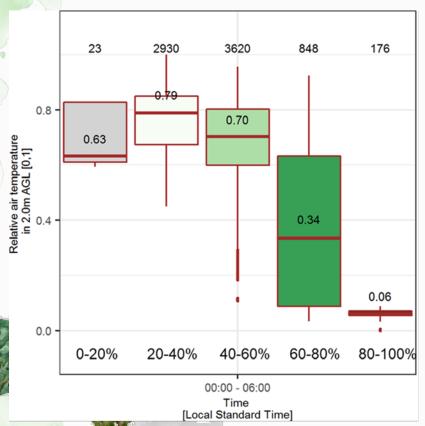
		Agricultural areas		Artificial surfaces		Forest and seminatural areas		
Type of Ecosystem services	Name of ecosytem services (Benefits)	Measurement unit	Mean	Standard error of mean	Mean	Standard error of mean	Mean	Standard error of mean
Provisioning	Leaf biomass	kg/ha	414.36	155.33	969.18	257.26	5972.28	418.60
	Edible values	score	2.78	1.24	2.67	0.71	30.47	3.35
	Medicinal values	score	2.85	1.26	3.33	0.93	35.92	3.50
Frovisioning	Ornamental values	score	1.41	0.62	2.31	0.74	13.27	1.84
	Others	score	0.80	0.30	1.85	0.55	16.48	2.18
	Carbon Storage	kg/yr	276.11	101.00	505.87	116.86	3602.21	350.89
	Gross Carbon Sequestration Potential	kg/yr	18.07	5.76	28.63	5.21	172.03	7.86
	Evapotranspiration	m³/yr	6.95	2.53	18.23	5.61	103.01	6.89
	Evaporation	m³/yr	1.55	0.56	4.06	1.25	22.88	1.53
	Transpiration	m³/yr	1.31	0.48	3.44	1.06	19.37	1.30
	Water Intercepted	m³/yr	1.56	0.57	4.07	1.25	22.95	1.54
Regulating	Avoided Runoff	m³/yr	0.26	0.10	0.71	0.23	3.94	0.28
	Oxygen Production	kg/yr	48.18	15.37	76.37	13.89	458.85	20.95
	Isoprene	g/yr	31.87	17.76	24.67	12.09	326.83	62.70
	Monoterpene	g/yr	28.32	21.27	102.72	34.68	625.52	81.24
	O3	g/yr	114.18	41.49	299.15	91.93	1690.50	113.16
	NO2	g/yr	42.08	15.29	110.24	33.88	622.96	41.70
	SO2	g/yr	3.51	1.28	9.20	2.83	52.04	3.48
	PM2.5	g/yr	6.46	2.35	16.95	5.21	95.71	6.41
Supporting	Tree microhabitat abundance	count	24.69	9.16	37.31	10.51	125.33	14.31
	Tree microhabitat richness	count	3.02	1.07	3.26	0.80	19.38	1.87
	Tree species diversity	Shannon index	0.17	0.06	0.46	0.07	1.24	0.06
	Tree structure diversity	Gini coefficient	0.58	0.07	0.52	0.04	0.70	0.02

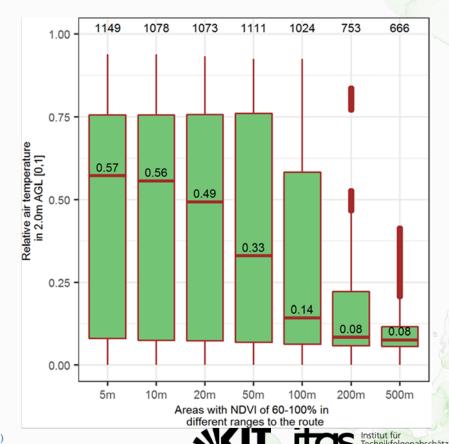

Karlsruher Institut für Technologie

Trade-offs between ES

Microclimatic modeling and linking to tree cover and urban morphology during heatwaves

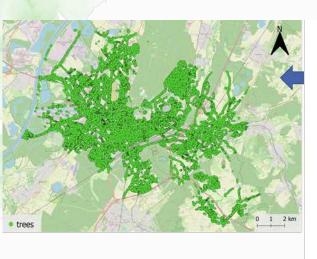




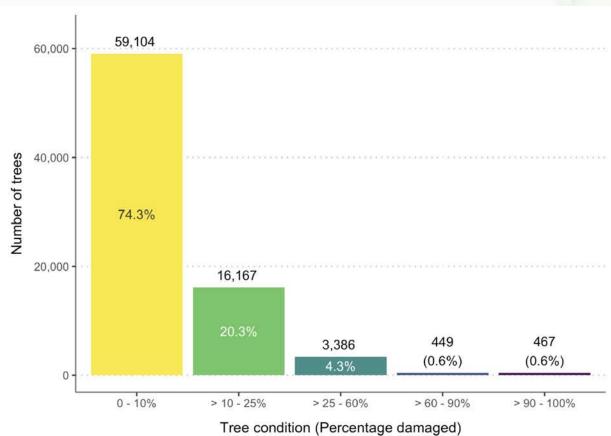

Graphics and photos: Marcel Gangwisch/DWD

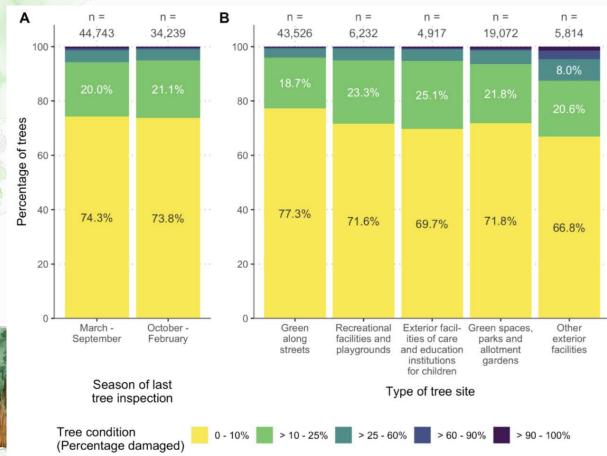
> Gangwisch, M.; **Saha**, S.; Matzarakis, A. (2023) (Urban Climate) /www.sciencedirect.com/science/article/pii/S2212095523002183

Cooling increased with tree cover percentage and proximity to green space

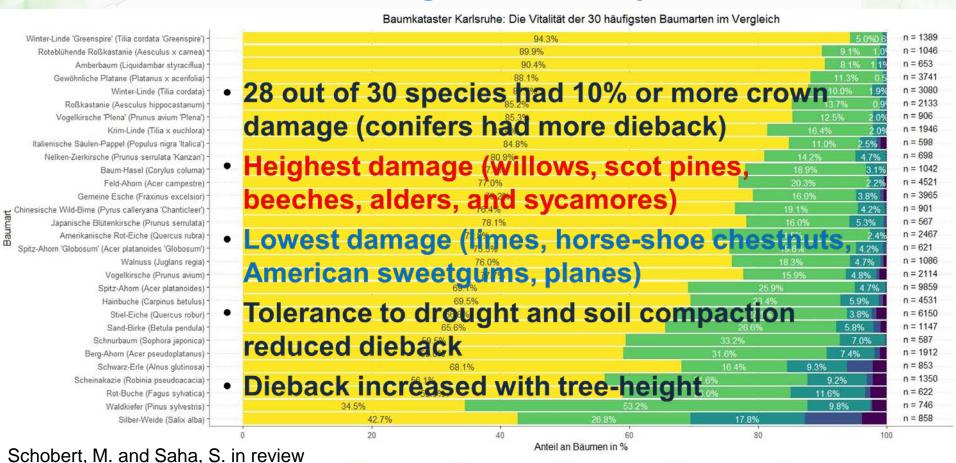

Gangwisch, M.; Saha, S.; Matzarakis, A. (2023)
(Urban Climate)
https://www.sciencedirect.com/science/article/pii/S2212095523002183

Crown damage of solitary trees




Crown damage in solitary trees

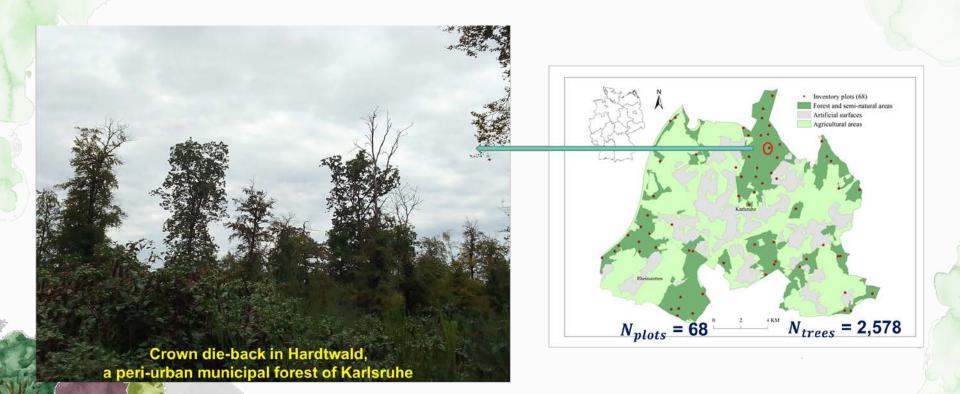
Crown damage in solitary trees



- No difference in terms of the season of tree inspection
- Street trees have the lowest crown damage (pruning effect!)
- Trees in "other exterior facilities" have the highest crown damage

Schobert, M. and Saha, S. in review

Crown damage in solitary trees

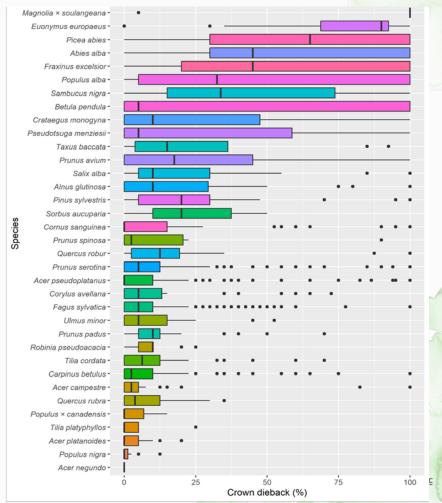

> 10 - 25 % geschädigt

Vitalitätsklasse

> 25 - 60 % geschädigt

> 60 - 90 % geschädigt

Crown damage in stand-forming trees of peri-urban forests



Photograph and h Somidh Saha

Crown damage in stand-forming trees of peri-urban forests

- 14 out of 28 native species had more than
 10% crown die-back
- Xylem cavitation tolerance and drought tolerance reduced dieback
- Competition (stem density) increased dieback
- Highest dieback (spindles, Norway spruces, silver firs, ashes, white poplars)
- Lowest dieback (black poplars, summer limes, Norway maples, red oaks, field maples)

Lyu, H. and Saha, S. (submitted)
Photograph: Somidh Saha

Case study on native and exotic oaks

Quercus robur L. (Native Pedunculate Oak or **Stieleiche**)

The Great Allerton Oak of Calderstones Park, Liverpool (1000 years old)

Native species in Germany

The oldest specimen (known to me!) in Karlsruhe city is 320 years old and located in the main cemetery (Hauptfriedhof)

6373 pedunculate oak trees in Karlsruhe owned by the Horticulture Department (Gartenbauamt) 🔭 🥊

High biodiversity, economic and cultural value

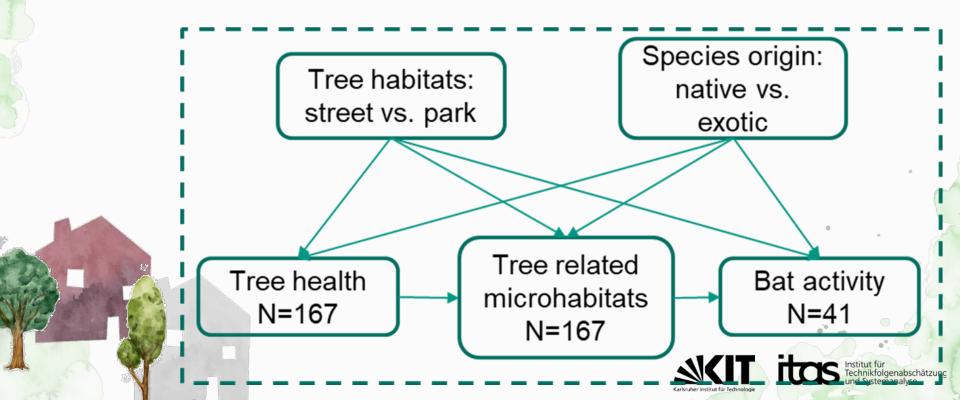
Quercus rubra L. (Exotic North American Red Oak or Roteiche)

Habitus (in Arnold Arboretum, Harvard, USA)

Red oak leaves and acorns

Introduced to Germany in 18th/19th century

The oldest specimen we have studied in Karlsruhe was 150 years old in a park 2538 red oak trees in Karlsruhe owned by the Horticulture Department (Gartenbauamt)


Working hypotheses

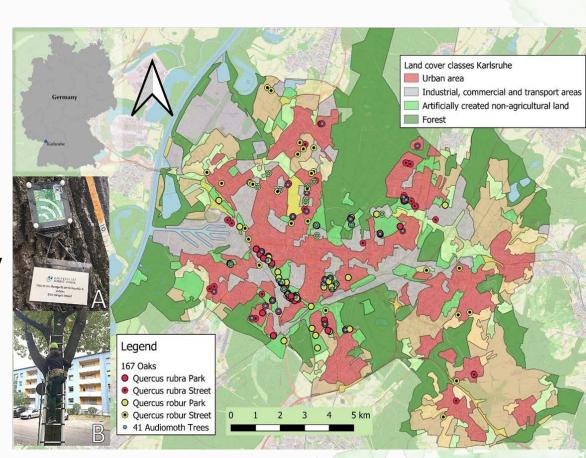
In Karlsruhe city, exotic *Q.rubra* (red oak) trees have better performance than native Q. robur (pedunculate oak) trees in:

- H1) radial growth;
- H2) tolerance to drought;
- H3) internal trunk defect;
- H4) health symptoms such as crown die-back;
 - H5) microhabitat provisions and bat diversity;
 - H6), and those responses varied between growing environments (park vs. street) and other factors.

Tree microhabitats, bats, and health symptoms: Dataset 1

Tree microhabitats, bats, and health symptoms: Dataset 1

Trees selection for health and microhabitats


- Diameter at 1.3 m height/DBH > 20CM
- Random selected
- 42 trees for each category

street vs. park
native vs. non-native
one tree died during field data colleciton

Trees selection for bat activity

- DBH > 50CM
- Random selected within 167
 - 10 trees for each category

street vs. park native vs. non-native and 5 more

Tree microhabitats, bats, and health symptoms:

Dataset 1

Dendrometry

Variables

Tree ID

Street/Park tree

Species

DBH

Number of cut branches

Dieback

Total height

Height to crown top

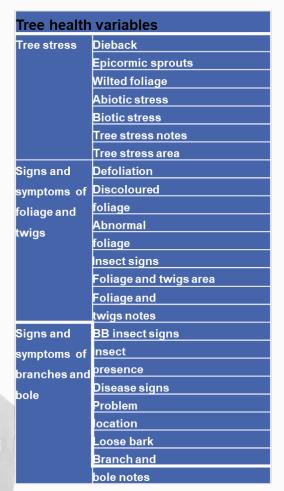
Height to crown base

Crown width

Crown missing

Impervious beneath

canopy


Shrub cover beneath

canopy

Crown Light Exposure

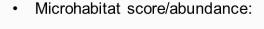
(CLE)

Crown openness %

Epicormic shoots

Crown dieback

Defoliation


Discoloured foliage

Four of 11 observed tree health symptoms were involved in the calculation of tree health score

Tree microhabitats, bats, and health symptoms: Dataset 1

- Insect galleries and boreholes
 Dendrotelm
- Bark loss
- Bark shelter
- Bark pocket
- · Dead branches
- Remaining limb
- Epicormic shoots
- Bryophytes
- · Foliose and fruticose
- Ivy and lianas
- Vertebrate nest

Normalized data of all microhabitat variables, which occurred on at least 20 trees

Microhabitat richness:

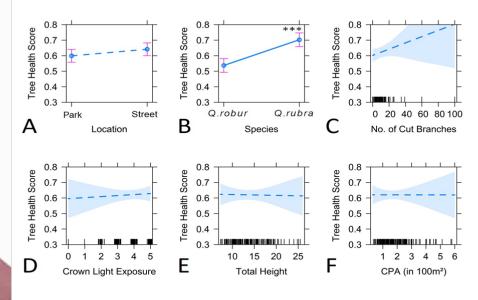
counting of microhabitat types on each tree

Twelve of 32 observed tree related microhabitats were involved in the analysis

Larrieu et al. (2018) and Kraus, D. et al. (2016)

Tree microhabitats, bats, and health symptoms: Dataset 1

- Experimental equipment: AudioMoth acoustic recorders
- Attach tree height: 4m
- Recording time: 6:30 pm 9:30 am, 2 October to 5 October 2020
- Sampling rate: 256 kHz, Gain: Medium



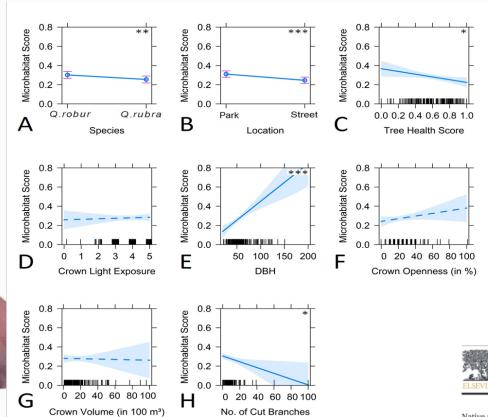


Red oaks had better health (lower crown die-back, defoliation, and discoloration) than pedunculate oaks.

Science of the Total Environment 853 (2022) 15

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitote


Native pedunculate oaks support more biodiversity than non-native oaks, but non-native oaks are healthier than native oaks: A study on street and park trees of a city

chätzunc

Monika Laux ^a, Hailiang Lv ^{a,b,a}, Martin H. Entling ^c, Jens Schirmel ^c, Aditya Narang ^c, Mario Köhler ^d, Somidh Saha ^{a,e}

But diversity and abundance of microhabitats are higher in native pedunculate oaks than exotic red oaks

Science of the Total Environment 853 (2022) 15860

Science of the Total Environment

Native pedunculate oaks support more biodiversity than non-native oaks, but non-native oaks are healthier than native oaks: A study on street and park trees of a city

nabschätzung nalyse

Bat activities recorded in AudioMoth survey

Bat group	Bat species (English name)	Active	% of sites
		minutes	with group
<i>Myotis</i> group		72	12.2
	Myotis daubentonii (Daubenton's bat)	72	
Nyctaloid group		623	65.9
	Nyctalus leisleri (Lesser noctule)	51	
	Nyctalus noctula (Common noctule)	567	
	Eptesicus serotinus (Serotine bat)	5	
Pipistrellus group		10,287	100.0
	Pipistrellus kuhlii (Kuhl's pipistrelle) /	576	
	Pipistrellus nathusii (Nathusius's pipistrelle)		
	Pipistrellus pipistrellus (Common pipistrelle)	9,388	
	Pipistrellus pygmaeus (Soprano pipistrelle)	323	
Plecotus group		356	48.8
	Plecotus cf. auritus (Brown long eared bat)	356	
Bats (total)		11,338	

- Bat activity: number of minutes with calls of each species.
- Acoustically similar bats were grouped to avoid misidentification

Bat activities near native and exotic oak trees at street and park

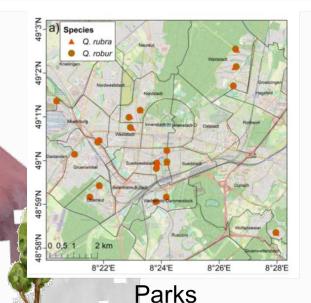
Pipistrellus bats: prefer parks but not differentiate species

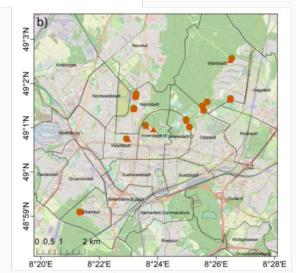
bats (Plecotus):
prefer native oaks
prefer parks
prefer trees with
fork split, sunscald
damage and
woodpecker holes

Image sources: Pixabay and Google

Noctule bats (Nyctalus): neither differentiate between trees nor between habitats

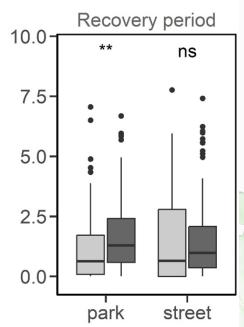
Tree ring growth, response to drought and internal trunk damage (Dataset 2)

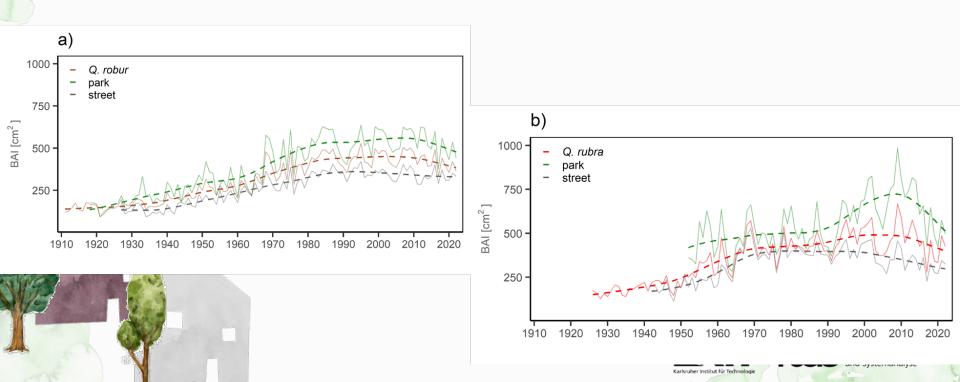


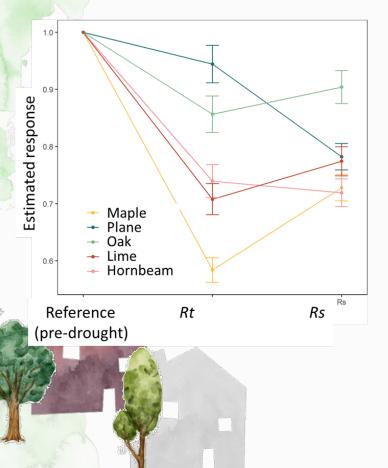

Tree ring research and sonic impulse tomography were used in this study in addition to standard dendrometric assessment.

Tree ring growth, response to drought and internal trunk damage (Dataset 2)

	Quercus robur		Querc		
	vit. class 0	vit. class > 0	vit. class 0	vit. class > 0	Total
Park	8	12	8	12	40
Street	8	12	8	12	40
Total	16	24	16	24	80


Streets


Pedunculate oak had higher resistance to drought in the street and lower recovery time from drought stress in parks



🖨 Q. robur 뼥 Q. rubra

Pedunculate oak grew slower than red oak but growth of red oaks fell after 60 years!

Growth response differs between species

Plane trees have high resistance but low resilience. Native oaks have both high resistance and resilience.

Trees https://doi.org/10.1007/s00468-022-02294-0

ORIGINAL ARTICLE

Drought tolerance differs between urban tree species but is not affected by the intensity of traffic pollution

Mareike Hirsch^{1,2} ○ · Helena Böddeker ¹ ○ · Axel Albrecht ¹ ○ · Somidh Saha^{3,4} ○

Received: 28 October 2021 / Accepted: 15 March 2022 © The Author(s) 2022

Working hypotheses revisited

In Karlsruhe city, exotic *Q.rubra* (red oak) trees have better performance than native Q. robur (pedunculate oak) trees in:

H1) radial growth; accepted (at least in first 70 years)

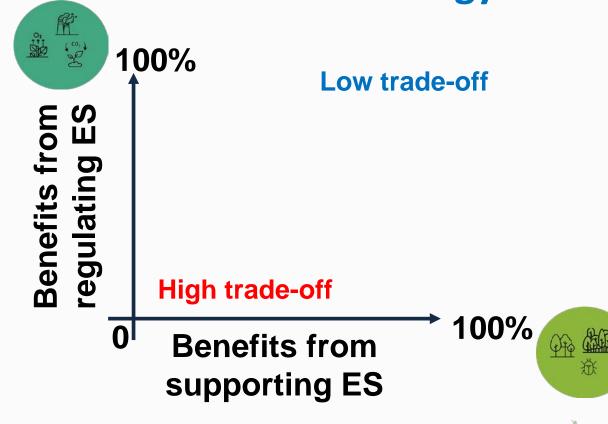
H2) tolerance to drought; rejected (warrants field ecophysiological study)
H3) internal trunk defect; rejected (warrants root decay and fungi study)
H4) health symptoms such as lower crown die-back; accepted (but can be

result of management)

H5) Microhabitat provisions and bat diversity; rejected
H6), and those responses varied between growing environments (park vs. street) and other factors: partially accepted (tree size, park vs. street, soil physical properties, and tree pruning intensity are important, warrants longterm monitoring)

Key take homes

- Poor vitality of solitary and stand forming trees
 Trade-offs between supporting and regulating
- ecosystem services


 3. Species origin, functional trait, irrigation, local soil, and solar irradiation are very important to consider
- 4. Healthy and high proportion of leaf area is key for cooling

What is a trade-off in ecology?

- It is a spatial, statistical, and temporal pattern of relationships between two or more variables when gain in one variable can result in loss in another.
- In nature, it is a very normal thing.
- It becomes a concern in anthropocentric systems when humans want benefits or services from multiple biophysical variables simultaneously and indefinitely.
 - Scientists and managers often want to understand these patterns in detail. For example, understanding processes and ramifications of trade-offs can contribute to tuning management so that a win-win situation can be reached.

What is a trade-off in ecology?

How to reduce trade-offs

- 1. Increase tree species diversity in streets
- 2. Increase flora and fauna diversity in parks and gardens
- 3. Increase urban green space cover
- 4. Improve and modernize tree inspection and tree care
- 5. Bring complexity and innovation to landscape design
- 6. Increase awareness, involve citizens and stakeholders

Front of our institute today

Institut für Technikfolgenabschätzung und Systemanalyse

Otto Dullenkopf Park Today

Institut für Technikfolgenabschätzung und Systemanalyse

Otto Dullenkopf Park in Future

